Courses included in the agreement UC-Brown

. 6-Credit courses (approx. 60h of programmed lectures or supervised work)

Advanced Experimental Techniques:

This course is carried out in the lab, except for the introduction session. Students carry out 3-4 Experiments of Advanced Level in different fields. They are selected from a pool of experiment that includes, among others:

- -Characterization of Laser Diodes.
- -Elements in an optical communication system.
- -Magnetic Materials characterization.
- -Analysis of a light signal by photon counting.
- -Semiconductor detectors for neutrons.
- -High-resolution Gamma Spectroscopy.

Usually one experiment requires several sessions. For each of them students receive information and are instructed specifically. After each experiment students must present a report and one of them must be presented in the form of a short seminar.

[Written exams: ~0%]

Particle Physics:

This course pursues the understanding of the basic aspects of the so-called Standard Model. It will use the book "Particle Physics", by BR Martin & G. Shaw, Ed Wiley as the main reference. The following is a tentative scheme of the course:

- Overview. Basic concepts
- Experimental techniques: particle detectors and accelerators. Particle colliders
- QCD, jets and gluons
- Weak interaction: Weinberg-Salam model. Experimental evidence. Higgs' boson
- Beyond the standard model: Neutrinos. Super-symmetry. Dark matter.

The course contains practical computer sessions to illustrate the lessons. From each of them the students will present a report.

[Written exams: ~40%]

Astronomy:

Theoretical sessions will be approximately half of the total and might include lessons on:

- Observational techniques.
- Use of Telescopes.
- Solar system, stars, galaxies and structures at larger scales.
- Software to reduce astronomical data.

This course includes experimental sessions in subjects like:

- Retrieving data from Astronomical databases
- Observations with optical telescopes and cameras
- Observation with the 2.5m radio telescope at IFCA
- Astrometry of asteroids.
- Rotation of Mercury.
- Classification of Active Galaxies.

Laboratory work will be assessed by means of short reports presented by the students. [Written exams: ~60%]

Also offered -in English- and belonging to the UC Diploma in Physics:

. 6-Credit courses (approx. 60h of programmed lectures or supervised work)

Experimental Optics:

Students will attend some previous sessions to familiarize with the fundamentals of the course. Then they will carry out at least 8 experiments in optics and attend two demonstrative sessions carried out by the teacher. Experiments are usually short, adequate for single-session format. They are related either to basic instrumentation in optics or to particular aspects of physical optics. A tentative list of possible experiments include:

- Transversal polarization of electromagnetic waves.
- Radiometry and photometry laws.
- Light dispersion in a prism.
- Spectral transmission of color filter.
- Digital image processing.
- Young's double slit: Interference of two beams.
- Newton rings and curvature measurement.
- Diffraction grating characterization for atomic spectrum analysis.
- Diffraction by simple apertures and obstacles.
- Spatial coherence of a monochromatic light source

Students have to present two written reports and a short (10-15min) seminar, each on one of the experiments.

[Written exams: ~30%]

Physics of Materials:

This course contains classroom and laboratory work in approximately the same amount. A tentative program for the theory might include lessons on:

- Materials and their classification.
- Optical properties of materials.
- Electric properties and conductivity.
- Magnetic properties and phenomena.
- Superconductivity
- Functional and nanostructured materials.

Laboratory work includes a report on the experiments performed by the students. Experiments are on the following aspects:

- Optical absorption spectroscopy and the electronic structure.
- Emission spectroscopy: photoluminescent materials.
- Electric resistivity in metals. Temperature effects.
- Ferromagnetic materials: hysteresis loop in hard and soft materials.

[Written exams: ~50%]